VISION'S INFLUENCE ON THE BODY AND MOVEMENT

Danielle M Bushey, PT, DPT, NCS March 8, 2017

"Focus" Conference

Topics

- Normal brain and body development
- Roll of vision in development of posture and balance
- How to set up activities to promote posture and balance in individuals with a vision impairment.

Bones make up a basic skeleton

- The bones grow in length and strength as we develop.
- The pressure and weight that we put on our bones help them to grow.
- Our joints change shape and become deeper and stronger as we put weight through them.

Muscles

The Brain

- Our brain tells our muscles when and how to move.
- The left side of the brain controls movement on the right side of the body.
- The right side of the brain controls movement on the left side of the body.

Outside of the Brain

- Different parts of the brain are important in controlling different parts of movement.
- Depending on where in the brain the injury is will determine your symptoms

Parts of the brain

- Frontal lobe
 - Creative thought, problem solving, intellect, judgment, behavior, attention, abstract thinking, physical reactions, muscle movements, coordinated movements, smell and personality
- Parietal lobe
 - Language, reading, tactile sensation and sensory comprehension
- Temporal lobe
 - Hearing and speech comprehension
- Occipital lobe
 - Vision

Motor Cortex: The Part of the Brain that controls Movement

What can go wrong at the brain?

- Too much fluid can put pressure on the brain tissues
- Bleeding stroke
- Blood clot stroke
- Parts of the brain do not develop
- Parts of the brain cannot communicate with each other

Vision Impairments can be the result of disorders of the eye, muscles, nerve, or brain.

- Retinopathy of prematurity
 - One of the most common causes of blindness in children
 - Abnormal blood vessel growth in the retina
- Optic Nerve Hypoplasia
 - Underdeveloped or absent optic nerve
 - Sometimes is related to Central Nervous System dysfunction
 - Can have similar presentation to Autism

Other vision impairments

- Septo-Optic Dysplasia
 - Underdevelopment of optic nerve/disc
 - Abnormal midline brain structures and pituitary hypoplasia
- Cortical Visual Impairment (CVI)
 - Brain-based visual disorder
 - Characteristics of color, attention to movement, trouble with complexity, trouble with visual novelty, absence of visually directed reach

The brain becomes stronger with use

- The brain develops and changes through use.
- The only way to strengthen the brain is to use that part of the brain.

- How do we use our brain?
 - Play
 - Practice
 - Problem solving
 - Experience
 - Trial and Error
 - ACTIVE PARTICIPATION

Photo of sensory input and motor output

Photo: Sensory Information goes to the Brain through the Spinal Cord

The Spinal Cord

- Nerves travel from the brain down the spinal cord to the muscles and tell the muscles how to move.
- Information about sensation travels from the body and into the brain.

The brain constantly uses this sensory information to improve the accuracy of movements

Image © www.apparelyzed.com

What is gross motor development

- The ability to use large (core stabilizing) muscles of the body to perform whole body movements:
 - Sitting
 - Standing
 - Crawling
 - Running
 - Jumping
- Body-eye coordination skills
 - Catching and throwing a ball
 - Kicking a ball

Posture and Balance: Why is it important?

- It is the foundation for all other skills:
- You can't get dressed if you can't maintain standing on one leg

 You can't write your name if you are falling over in your chair.

Vision's influence on gross motor development

- Social awareness
- Imitation
- Visually guided reach
- Motivation to move
- Feedback on successful movement
- Body often follows the head and eyes

Infant

- Cries
- Smiles
- Turns head
- Looks and follows people or objects
- Hands are open

Three months of age

- Starts to lift their head against gravity on belly and laying on their back
- Start to push into the surface they are laying on
- Start reaching and grasping
- Develops eye contact, smell, sounds
- Touch is very important
- Starts to tolerate different physical positions

Photos of 3 month old babies

Six months of age

- Sitting begins
- Weight bearing and weight shifting
- Gains strength in torso
- Learn about the world through exploration
- Uses hands together
- Reaching and grasping
- They like to move a lot

One year of age

- Able to use their arms to catch themselves when they lose balance
- Able to change between positions
- Able to pull into stand and start walking
- Starts building and stacking rings
- Starts holding a cup and spoon

Development of walking

Ability to stand and be stable

 Ability to move and be dynamic

Delay of postural development in individual with vision impairment

Accompanying Traits

- Late development of head control
- Head down posture
- Dragging feet when walking
- Walking with feet wide apart
- Self-provided vestibular input

Contributing factors

- Delayed neck and posture muscle strength
- Front neck muscles get tight, back muscles get "overstretched"
- More motivated by what is touching them than what is not touching them
- Not aware of social cues, lack of imitation

What can we change?

the individual

the task

the environment

Improving posture

- Prevention of tight/loose muscles
- neck, trunk, hips
- spent time in different postures, not just sitting
- Prevent postural fatigue
- Change position every 30 minutes
- Good seating: feet on floor, arm rests
- Head switch

- Encourage reaching over head
- Reinforcement and verbal/tactile reminders
- Orientation
- Reaching for things that are in a set location
- Decrease visual and auditory clutter
- Give sensory breaks

Photo of an individual slumped over in his wheelchair: How would you help?

What is Balance?

The 3 Sensory Systems for Balance

- Vision
- Proprioception
- Vestibular
- To maintain vertical orientation:
 - Gravity (vestibular)
 - Relationship between body segments (proprioception)
 - Support surface (proprioception)
 - Environment (vision)

Examples of balance

- Change in your base of support
- Reaching outside of your base of support
- Turning your head while standing still or walking
- Tripping and catching your fall
- Pushing open a door
- Walking down stairs

Who is the individual with a balance problem?

- The child who prefers to lay on the ground
- The individual who gets very nervous when they are not touching a stable surface
- The individual who does not like to stand on a soft or unsteady surface
- The individual who gets overwhelmed in a busy environment

Can one sensory system compensate for another missing or damaged sensory system?

- The balance problem might be because of something that you can see
 - A movement problem
 - A vision problem
- The balance problem might be because of something that you can not see
 - A lack of sensory information (vision, somatosensory, vestibular)
 - An inability to process all that information

Balance

Reactive

- The ability to protect yourself when you might fall over
 - Ankle
 - Hip
 - Stepping strategy

Anticipatory

- The ability to set your body up so that you can do an activity without falling over
 - Reaching for a toy
 - Pushing open a door
 - Doing desk work

Teaching principles

- You must keep the individual safe
- Set up opportunities that are motivating
- Allow the child to explore
- Use your hands as little as possible. Guard the child, but try not to hold onto them unless it is necessary.
- Allow the child to fall only if it is safe. This will help the child learn what is safe. This will help the child learn to protect themselves.

Teaching ideas

- Use other sensory systems (sound or touch) for reaching and other dynamic activities
 - Sounds (balls with bells)
 - Vibration
 - Switches
 - Tactile objects
- Make it fun (stimulate other sensory systems)
 - Roller-skating/Ice skating/Snow shoes
 - Swings
 - Ball pit
 - Pool
 - Scooter
 - Horse back riding

More teaching ideas

- Yoga
- Bean bag on my head
- Jumping
- Tug of War
- Crawling through tunnel
- Running, walking, jumping along a trailing board or rope
- Wheelbarrow walking
- Kick the Carton (with sound inside)
- Walking or dancing steps to music
- Throwing, catching, rolling something with bells inside

Photo: Introduction to the Tilt Balance Board

Photo: Tilt Board - Take 2

Photo: Tilt Board - Take 3

Photo of a student roller skating

Photo of a student walking in "moon shoes"

Photo for a girl walking on the balance beam

Photo of girl lying on her side to help focus her vision

Photo of girl doing squats against wall

Photo of a girl doing a puzzle in kneeling

Photo of yoga class

References

- Bennett, Susan and Karnes, James. "Neurological Disabilities: Assessment and Treatment." Lippincott Williams & Wilkins. 1998.
- Heydt, Kathy, et al. "Perkins Activity and Resource Guide: A handbook for teachers and parents of students with visual and multiple disabilities." second edition. Perkins School for the Blind. 2004.
- Shumway-Cook, Anne and Woollacott, Marjorie. "Motor Control: Translating Research into Clinical Practice." 4th edition. Lippincott Williams & Wilkins. 2012.
- www.mdhealth.com
- www.postitscience.com